Determination of Material Properties Related to Quantitative CT in Human Femoral Bone for Patient Specific Finite Element Analysis - A Comparison of Material Laws
نویسنده
چکیده
Aim of this study was the determination of transverse-isotropic elastic properties of the human femoral d iaphysis and the evaluat ion of density-elasticity laws from literature with the acquired data. Five specimens of cortical bone were extracted from human cadaveric femora and mechanically tested via three point bending and compression tests, in order to determine the Young’s modulus in proximal-distal and in transverse direction respectively. Bone mineral density was determined via quantitative Computed Tomography for all samples and material properties were calculated according to the available regression laws from literature. Deviations of the calculated and experimentally determined Young’s moduli were analyzed. Some elasticity density laws showed good correlation to the acquired data in anterior-posterior direction, such as the law of Morgan et al. (2003) and the law of Carter & Hayes (1977). The results indicate high importance of an adequate determination of bone mineral density.
منابع مشابه
Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method
Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...
متن کاملAn investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملInhomogeneous material property assignment and ori-entation definition of transverse isotropy of femur
The finite element method has been increasingly adopted to study the biomechanical behavior of biologic structures. Once the finite element mesh has been generated from CT data set, the assignment of bone tissue’s material properties to each element is a fundamental step in the generation of individualized or subject-specific finite element models. The aim of this work is to simulate the inhomo...
متن کاملComparison of Clinical, Functional, and Radiological Outcomes of Total Knee Arthroplasty Using Conventional and Patient-Specific Instrumentation
Background: Recently, patient-specific instrumentation (PSI) systems have been developed in order to increase theaccuracy of component positioning during total knee arthroplasty (TKA); however, the findings of previous studies arecontroversial in this regard. In the current randomized clinical study, the outcomes of computer tomography (CT)-basedPS (patient specific)-guided TK...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012